Opis

Pozostałe 4,9% energii masowej we Wszechświecie to zwykła materia, składająca się z atomów, jonów, elektronów i zbudowanych z niej obiektów. Z materii tej składają się gwiazdy, które produkują niemal całe światło, jakie widzimy we Wszechświecie, gaz międzygwiazdowy w ośrodkach międzygwiazdowych i międzygalaktycznych, planety oraz wszystkie obiekty obecne w dzisiejszym życiu, na które możemy się natknąć, dotknąć lub wejść z nimi w interakcję na inny sposób[72][73]. Materia istnieje w czterech stanach skupienia: stałym, ciekłym, gazowym i jako plazma. Postępy w technikach eksperymentalnych wykazały jednak obecność innych stanów skupienia, wcześniej znanych jedynie w teorii – kondensat Bosego-Einsteina oraz kondensat fermionów. Patrząc w sposób bardziej zasadniczy, materia jest złożona z dwóch rodzajów cząstek elementarnych: kwarków i leptonów[74]. Dla przykładu, neutron składa się z dwóch kwarków dolnych oraz jednego górnego, podczas gdy proton składa się z dwóch górnych kwarków i jednego dolnego. Atomy są zbudowane z kilku protonów i neutronów (rodzaje barionów), które z kolei mają kilka elektronów (rodzaj leptonów) okrążających je. Ponieważ większa część masy atomów koncentruje się wewnątrz ich jądra atomowego składającego się z barionów, astronomowie często używają terminu „materia barionowa” do określenia tego rodzaju materii, pomimo że materia ta w niewielkim stopniu składa się również z elektronów. Skupienie się na materii z perspektywy cząstek elementarnych pozwala na odkrycie nowych stanów skupienia – dzięki temu odkryto m.in. plazmę kwarkowo-gluonową[75]. Pierwotne elektrony i neutrony zostały utworzone z plazmy kwarkowo-gluonowej w trakcie Wielkiego Wybuchu, kiedy temperatura spadła poniżej dwóch bilionów stopni. Kilka minut później z protonów i neutronów uformowały się jądra litu i berylu. W tym czasie mogło powstać wiele atomów boru, jednak proces ten został zahamowany ok. 20 minut po Wielkim Wybuchu przez szybki spadek temperatury i gęstości w miarę rozszerzania się Wszechświata. Proces ten jest znany jako pierwotna nukleosynteza. Kolejne nukleosyntezy, tym razem cięższych pierwiastków, wymagała obecności ekstremalnie wysokiej temperatury i ciśnienia obecnych w gwiazdach i supernowych. Procesami tymi były gwiezdna nuklosynteza i nukleosynteza w supernowych.